Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Timekeeping, a cornerstone of modern technology and daily life, is poised to achieve unprecedented accuracy due to groundbreaking research in atomic and nuclear clocks. Essential for global positioning systems (GPS), telecommunications and financial networks, the definition of a “second” has evolved over centuries. The latest innovations could lead to a redefinition of the second, enhancing accuracy across numerous applications, according to recent scientific developments.
As per a report by Phys.org, the current standard for measuring a second is based on electron transitions in caesium-133 atoms, with a frequency of 9,192,631,770 Hertz. While highly precise, scientists have been exploring elements with higher transition frequencies for even greater accuracy, according to several reoorts. Strontium, with a transition frequency in the visible light range, has shown promise. As per various sources, in 2021, researchers highlighted its potential and a redefinition of the second using strontium is being considered for implementation by 2030.
In September 2024, advancements in nuclear clocks were reported by a team in the United States, marking a significant step beyond atomic timekeeping. Thorium-229, an isotope with a unique nuclear transition, was utilised in these studies. This transition, excited by ultraviolet light, has a frequency approximately one million times higher than that of caesium. Reports indicate that this advancement overcomes the previous challenge of creating a frequency comb compatible with ultraviolet light, a breakthrough enabling precise measurements at this range.
Nuclear clocks, offering measurements accurate to the 19th decimal place, are expected to revolutionise technologies reliant on precision, as per reports. Applications include refined GPS systems, advanced scientific research and insights into phenomena governed by quantum mechanics and general relativity. Researchers have emphasised the potential for these clocks to enhance the measurement of ultra-fast processes, a critical factor in fields like physics and space exploration.
While caesium remains the standard for now, the strides made with thorium-229 suggest a transformative future for timekeeping technology, with far-reaching implications for science and industry, as per reports.